

AUTOMATION OF ASSEMBLY LINES ASSISTED BY A ROBOTIC ARM AND A MOBILE ROBOT

Balteş Octavian-Isaia Lucian Blaga University of Sibiu octavian.baltes@gmail.com

Objectives

- Simulation of assembly line automation using modeling languages.
- Handling a robotic arm and a mBot.
- Creating the model to solve the problem.
- Writing the code to solve the problem.
- Prototype to simulate the AGVs in logistic processes.

The 3 main approaches suggested by OMILAB

Scene 1 - Pick-up Scene 2 - Deliver ULBS

Scene 4 - Reload

Scene 3 - Store

Storyboard

2. Conceptual Modelling

Scene 1 - Pick-up

Scene 2 - Deliver

Sub-models used to create the main model.

Universitatea "Lucian Blaga" din Sibiu

Conclusions and further developments

I believe that this type of project has wide applicability and can be successful in industrial companies.

From a software point of view, I used Bee-Up as a tool for the CPS part and the Flowchart as a working method, and for the Design Thinking and Conceptual Modeling parts I used Scene2Model.

In the future, I want to make the robotic arm smarter, attaching a camera so that the parts are separated based on QR codes. Apart from the automation problem, I want to make a project in which the arm is used as a 3D printer.

As for the mBot, I want to attach at least 2 proximity sensors so that it can move alone on an obstacle course.

References

- Dimitris Karagiannis, Heinrich C. Mayr, John Mylopoulos "Domain-Specific Conceptual Modeling"
- Bee-Up Tool : https://austria.omilab.org/psm/content/bee-up/info
- Scene2Model Tool: https://austria.omilab.org/psm/content/scene2model/info
- ADOxx : https://www.adoxx.org/live/home
- OMiLAB Approach: https://www.omilab.org/assets/docs/OMiLAB%20Laboratory%20Layout_DRAFT.pdf

Thank you for your attention!

